
Vorabfassung des Artikels 

Johannes Melsbach, Detlef Schoder, and Sven Stahlmann. “Unsupervised Multi-Label Document Classification 
for Large Taxonomies Using Word Embeddings,” 2019. 
 

 
Unsupervised Multi-Label Document Classification  

for Large Taxonomies Using Word Embeddings 
 
 

 
Abstract 

 
More and more businesses are in need for metadata for their documents. However, automatic generation for metadata 

is not easy, as for supervised document classification, a significant amount of labelled training data is needed, which is 
not always present in the desired amount or quality. Often, documents need to be tagged with a predefined set of 
company specific keyword that are organized in a taxonomy. We present an unsupervised approach to perform multi-
label document classification for large taxonomies using word embeddings and evaluate it with a dataset of a public 
broadcaster under two assumptions – “perfect rationality” and “bounded rationality”, which allows the approach to 
outperform the average performance humans. We point out strengths of the approach compared to syntactical 
approaches like tf-idf and show that also allowing to match keywords on a higher taxonomy level can significantly 
increase precision and recall. 
 
1. Introduction  
 

More and more businesses are in need for metadata for their documents. Metadata is required to get users 
engaged with products and services on the internet, e.g. to provide navigation tags during product search in web 
shops, to set up content-based recommender systems, to provide short summaries, or to optimize content for search 
engines. At the same time, more and more full text data is generated, like social media content, product descriptions, 
and other text sources. Regardless for which application scenario metadata is needed, it is challenging for companies 
to obtain it. Many businesses have to find or reconsider their solution how to generate metadata, either manually 
or automatically. Both ways have their shortcomings.  

In manual metadata generation–especially in data rich applications–the human factor becomes a bottleneck. 
When humans have to assign tags1 to documents, they often have restrictions and limited resources: time-pressure 
and their own imaginativeness, experience and condition determine quality and quantity of the output. The result 
is that usually only few tags are assigned, not all documents are covered, or keyword generation is subjective and 
not repeatable. As an alternative, automatic keyword generation techniques can provide higher quantity, but have 
other drawbacks, as the keyword generation techniques are often either not accurate enough and produce too many 
keywords that are irrelevant, too specific or too general, or do not match the vocabulary used by the organization. 
In other words, the information quality of automatically generated keywords in the comprehension of fitness-for-
use [1] is hard to obtain and therefore often limited. 

Often, the vocabulary of the organization is organized in a hierarchical form, in a taxonomy. If the number of 
terms in a company’s taxonomy is small enough and labelled training data is at hand, classifiers can be trained. In 
quite some contexts, however, numerous classes exist within the company context, e.g. more than 10,000. In those 
cases, a huge labelled training set is required. Assuming 5,000 labelled training instances per class would lead to a 
good classification, the labelled training set needs to be in the magnitude of 10 million document-class relations. 
Assuming further, that a typical labelled training set would not have an equal distribution among classes, the 

 
1 The manual process of assigning keywords to a document is often called tagging, whereas in multi-label text classification, the keywords are 
typically called classes. We use the terms tagging, classification, annotation or mapping interchangeably throughout the paper. 



training set needs to be even larger. But not all companies have huge labelled training sets at hand. Often, the 
opposite is the reality: Training data is only available to a limited extent or is not present at all.  

Another factor makes supervised classification difficult: temporal dynamics. Over time, both the vocabulary of 
the documents and the vocabulary of the taxonomies change. For new upcoming words (like “Brexit” or “smart 
speaker”), a formerly trained classifier might perform poor on accuracy, and each time vocabulary needs to be 
adapted, classifiers have to be trained again. The problem of having enough labelled training data at hand is 
therefore a constant companion and comes again and again in new facets.  

Our research we document in this paper can be best described by asking the question: How can multi-label 
classification of documents be done for large taxonomies (when typically not enough labelled training data is at hand 
for supervised classification)? 

 
2. Related Work 
 
2.1. Existing Approaches for Unsupervised Keyword Identification in Text Documents  

 
One of the most fundamental approaches in keyword identification is the term-frequency/inverse document 

frequency method (tf-idf) [2,3]. tf-idf identifies keywords that quantitatively best differentiate documents within a 
document collection, is unsupervised and easy to compute. Unfortunately, tf-idf does not allow to match keywords 
to items of an existing taxonomy. Furthermore, it is not applicable to single documents, as the measure requires a 
document collection to evaluate the keywords’ descriptiveness.  

TextRank is an algorithm that uses graph-based text ranking models that were derived from Google’s PageRank 
algorithm and exists in various variations [4,5]. TextRank outperforms tf-idf in classic keyword extraction tasks [6]. 
TextRank however also has shortcomings, as it sometimes leaves out keywords that occur rarely, but are important 
in the context of the document [7]. Next to tf-idf and TextRank, topic modelling methods such as PLSI [8] or LDA 
[9] have been proposed to identify word collections from documents that aim to describe topics the documents deal 
with. Similar to tf-idf, topic modelling methods are unsupervised which makes them promising for application on a 
large scale. Nevertheless, extracted keyword collections have been reported as being hard to interpret [10] which 
limits applicability in end-user systems. Furthermore, additional supervised processing is necessary to match 
extracted keywords to existing taxonomies. In this case, the results of tf-idf-based, TextRank-based, or topic 
modelling methods have to be used as features in supervised document classification, which leads to challenges in 
precision and recall when the predefined taxonomy is large, or taxonomy items are not perfectly distinctive.  

Previously proposed keyword generation approaches all rely on a so-called bag-of-words (BoW) perspective. 
This means, that the quantitative presence or absence of words is the foundation of any representation vector (e.g. 
document or word). In keyword relevance computations this is challenging, as spelling errors, synonyms or word 
flections lead to large but sparse matrices. However, applying methods like stemming, lemmatizing, spelling 
correction, or synonym mapping does only address the symptoms (of sparse matrices), but not the root cause as 
BoW approaches are limited in capturing semantics like context. Often, low accuracy is the result of mapping an 
arbitrary set of keywords to a predefined taxonomy. 

A promising approach to address BoW context loss was proposed by Mikolov et al. [11]. Word2Vec creates a 
distributed representation of words2 (or larger entities such as phrases or documents) that does not depend on the 
presence or absence of the target word but creates a vector representation of a word’s context. One important 
characteristic of these word embeddings is that semantic similarity corresponds to arithmetic distance. The paper 
at hand considers this representation as a foundation for unsupervised keyword generation approaches. Therefore, 
related literature will be detailed in the following. 

 
2.1. Classification with Distributed Represen-tations of Documents 
 

The most prominent approach of distributed representation of text documents is the paragraph2vec approach 
of Le and Mikolov [12]. It proposes two different methods to train local document vectors along with global word 
vectors. Before Le and Mikolov, other researchers have proposed extensions of the word2vec model to obtain 
distributed representations of sentences, phrases or documents [13–16]. Approaches reach from simple ones that 

 
2 Distributed representation is often connected to the term “word embeddings”. Both denote the output of the word2vec approach by Mikolov et 
al. [11]. 



calculate an average of the words in a sentence, phrase or document, to more complex ones, e.g. that combine the 
word vectors in an order given by a parse tree [17]. 

Distributed representations of documents on the basis of word2vec approaches allow for a classification of 
documents with a subsequent classifier, typically a neural network. However, for all subsequent classification tasks 
on top of word2vec, manual effort is required. Experts need to link documents to classes to form a training set for 
the classifier.  

For taxonomies, we typically face the challenge of having a high number of keywords (in magnitude of 10,000 
to 100,000) and therefore as many classes for the classification task. With the growing number of classes, also a 
significantly large manually annotated training set is required. Furthermore, this is not a one-time effort, but 
ongoing. If vocabulary changes over time (as new word like “Brexit” come up), both word2vec model and classifier 
have to be trained periodically to reflect newest words.  

To sum up, the usage of word embeddings allows to perform a more meaningful feature engineering than solely 
relying on BoW based approaches. But considering the drawbacks of supervised classification for text documents 
on top of word embedding approaches, we find that a) a large number of manual tags have to be assigned by experts 
to obtain a useful training set due to a high number of classes, b) manual tags have to be assigned not only initially, 
but continuously due to changing vocabulary, and c) not only word2vec, but also the subsequent classifier has to be 
trained periodically. These drawbacks make classifiers on top of word2vec suitable in theory, but less suitable in 
practice. 

 
3. An Unsupervised Approach to Generate Tags for Large Taxonomies 

 
3.1. Approach Requirements 
 

Founded in the need for metadata of an example company, a public broadcaster in Germany, we elicited three 
requirements for keyword annotation, which we depict in short: 
 
R1. Keyword annotation should take place automatically with a minimum of human effort. 
R2. Identified keywords should match an organization’s specific taxonomy (in the magnitude of >10,000).  
R3. New upcoming words (like “Brexit” or “smart speaker”) in documents should be matched as well, taking 
temporal dynamics of the vocabulary into account. 
 

In the following, we depict an approach to match the elicited requirements. 
 

3.2. Approach Details 
 

Assigning a definite set of taxonomy keywords to documents is a classification task. Given a document space 
and a taxonomy without any relation between them that could be used for supervised learning, we present an 
approach that does not require manually annotated training data and is robust against changes in vocabulary. Our 
approach consists of three steps: 
 
First step: Train word vectors and document vectors on a company specific data set which we denote as world 
corpus vectors (WCV). Here we use the Paragraph Vector Distributed Memory (PV-DM) approach of Le and Mikolov 
[12]. 
 
Second step: Under the prerequisite, that the keywords of the predefined taxonomy are also found within the world 
corpus (see first step), we collect the word vectors generated for the keywords in the taxonomy. As a result, we 
receive a common vector representation of both documents and taxonomy keywords. 
 
Third step:  We compute dot products as distances between documents vectors and word vectors to find best 
matches. For each document, we compute the dot products to all taxonomy word vectors and choose the ones with 
the highest cosine similarity (Figure 1). Multiple taxonomy keywords can be assigned by choosing the top n 
keywords or keywords over a certain threshold of similarity or both. Emerging keywords (e.g. due to changing 
vocabulary or emerging topics) might be discovered when word vectors from the WCV are found similar to a 
document vector, but do not exist in the predefined taxonomy.  
 



 
 
Figure 1. Calculation of dot products for each document vector with all word vectors of the taxonomy 

 
This way, we can simplify the problem of keyword classification and discovery to algebraic vector operations. 

The approach is not truly unsupervised, as some authors emphasize that word2vec is not unsupervised, but self-
supervised, as some error backpropagation takes place through correct and incorrect predictions [18]. But in the 
sense that no annotation of human experts is required for training, the method can be considered as unsupervised. 

Figure 2 depicts the approach in contrast to simple classification approaches (Figure 2 left), where the 
classification is done on single words or n-gram representations only. Figure 2 (middle) shows advanced 
classification approaches, that use distributed representations as a better input for the classification task. Figure 2 
(right) depicts the approach presented here that classifies via cosine similarity after transforming the taxonomy into 
vector representation as well. Considering the outlined requirements, R1 and R3 distinguish the approach from 
classifiers as depicted in Figure 2 (left and middle), and R2 distinguishes the approach from tf-idf and other 
unsupervised approaches that do not use word embeddings. 
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Figure 2. (top) simple classification without distributed representation, (middle) advanced classification 
with distributed representation of words and documents, (bottom) our proposed approach 

 
3.3. Approach Assumptions 
 

The feasibility and simplicity of the approach bases on three assumptions we made.  
 
Assumption 1: We assume that it is valid to make a lookup for keyword word vectors.  

The keywords in the taxonomy have no context except from their position in the taxonomy, which is a rather 
weak information compared to the richness of word vectors computed by word2vec. As we have no possibility to 
compute a rich context of single taxonomy keywords, we assume it is valid to make a lookup on the word vectors 
of the WCV and to use these vectors for the keywords in the taxonomy as well. 

 
Assumption 2: The keywords in the taxonomy are part of the vocabulary of the document corpus. 

When new words come up in the document corpus, the taxonomy must either be updated as well, or the 
taxonomy is required to consist of a more general, slower changing vocabulary that does not adopt fashion words. 
In general, the assumption that the vocabulary of the taxonomy is a subset of the vocabulary of the document corpus 
seems valid, as the taxonomy is designed to describe the documents. In other words, no case should exist where a 
taxonomy keyword is not reflected in the document corpus, otherwise the taxonomy would fail to reflect the 
document corpus. 

 
Assumption 3: It is valid to compare word vectors with document vectors. 

Word vectors and documents vectors (the output of the trained neural network) are of the same dimensionality 
and structure. Therefore, technically, it is possible to calculate dot products between any pair of vectors. However, 
it needs to be discussed if document vectors and word vectors can be compared in a semantic way. Word vectors 
represent the context of a word, which is the set of words typically surrounding the focal word. Document vectors 
however represent the context of a document which is less easy to imagine. In a way, the training procedure is 
similar, but the training input is a different one, so one could argue that there is a systematic difference between 
word vectors and document vectors. Lau and Baldwin [19] state that the qualitative difference between word vectors 
and document vectors remains unclear and try to give an impression of the difference with an example document. 
Apart from that, the comparability of word vectors and document vectors has not been thoroughly discussed in the 
literature so far. Practitioners who have been experimenting with similarities across words and documents find 
that–at least on a Wikipedia corpus–the closest results for words are mostly other words, and for documents mostly 
other documents3. Furthermore, it has been stated that it depends on the training method and data whether it is 
meaningful to compare word vectors and document vectors3. In this paper, we assume that comparability is given, 
although word vectors and document vectors might be of slightly different nature.  
  
4. Evaluation 
 

We evaluate our approach with a large text corpus of a nation-wide public radio broadcaster in Germany that 
covers 63,165 manuscripts with about 70 million words in total. Each document has a minimum length of 100 words 
and is written in German language. The broadcaster has an archive process where archivists manually assign 
keywords to the manuscripts. For all 63,165 documents, these manually annotated keywords are provided. The 
keywords are embedded in a company specific taxonomy that already lasts for decades and slowly changes over 
time. The taxonomy consists of 12,236 keywords on seven levels. On average, an archivist assigns 4.7 keywords to 
a document, in most cases between 3 and 7. 

As text preprocessing, we replaced all capital letters to small letters, all numbers by their word equivalents (“1” 
to “one”), replaced all special characters and eliminated all punctuation, as is common for word2vec preprocessing. 
Also, we eliminated stop words and identified bigrams in the text corpus and in the taxonomy and concatenated the 
bigram words with underscores accordingly.  

For each document vector, we calculated the dot products with all word vectors of the taxonomy, resulting in 
63,165 x 12,236 dot products. The best dot product for each document represents the best prediction for the 

 
3 https://groups.google.com/forum/#!topic/gensim/Fujja7aOH6E 



document. For each document, the calculated dot products show that the similarities drop drastically within the best 
10 dot products. Figure 3 shows the sequence of best dot products for two example documents in its entirety (top) 
and for the top 100 dot products (bottom). Figure 4 shows the distribution of the top1 (best dot product per 
document) for all 63,165 documents. 

 

 

 
Figure 3. Sequence of best dot products for two example documents in its entirety (top) and for top 100 

dot products (bottom) 
 

 
Figure 4. Distribution of best dot products  

 
High dot products might indicate semantic similarity between documents and taxonomy word vectors; however, 

they are no guarantee. In contrast, low dot products are certainly no good ground to find keywords that describe 
the documents. Figure 3 indicates that the approach allows us to predict a handful of keywords with high dot 
products in the first drop-off of the graphs. 



 
4.1. Evaluation Method and Metrics 
 

For evaluation, we use the most common evaluation metrics for multi-label classifiers–recall and precision. We 
evaluate our approach in two perspectives, a) under a “perfect rationality” assumption and b) under a “bounded 
rationality” assumption, terms coined in a decision-making context by Simon [20]. 

 
Evaluation under “Perfect Rationality” Assumption. In decision tasks, human decisions are often considered 
as the reference for a machine’s output. The basic assumption is that archivists decide under perfect rationality 
which keywords fit to the text and which not. In this view, machines can get close to the quality of human work 
but cannot beat it. The view of “humans do best” is often pursued in automation tasks that aim to imitate or replace 
human work without necessarily improving it. In practice, a rich data set of historical data is often available that 
can be used to evaluate machine against human. In our case, we have manually assigned keywords for 63,165 
documents at hand that we can use for evaluation. 
 
Evaluation under “Bounded Rationality” Assumption. In reality, archivists might not always be perfectly 
rational in their decisions. Time pressure, extensive knowledge of the taxonomy with 12,236 keywords, experience, 
fatigue and daily condition may influence the information processing of archivists and, as a result, the quality of 
their work. Other than in an evaluation under “perfect rationality” assumption, we assume that humans may miss 
out keywords or fail to assign the best keywords due to their “bounded rationality” [20]. This opens up potential 
for algorithms to outperform humans or to complement humans in their work. 

As our evaluation method, we chose to reassess the keywords for 100 random documents out of 63,165. In order 
not to be primed and unbiased towards the predicted keywords, we mixed the assigned keywords of the archivist 
together with the top 10 predicted keywords and scrambled their order, so we were not able to tell anymore which 
key words belong to whom. Then three researchers had to decide independently for all 100 documents whether the 
keywords in the set of mixed keyword matches the particular document (y) or not (n). After the assessment, we 
used majority vote to solve differences: If at least two researchers have opted for yes, the keyword was considered 
as a correct keyword, otherwise not. Subsequently, we were able to compute recall and precision for the algorithm.  

Figure 5 depicts true positive, false positive, false negative, and true negative sets for both assumptions. The set 
of all correct tags changes depends on the assumption (shaded in grey in Figure 5). Whereas under “perfect 
rationality” assumption, archivists per assumption were unbeatable, in a “bounded rationality” scenario, both 
archivists and algorithms can be right or wrong. For “perfect rationality” assumption (Figure 5 left), the archivist 
has both a recall and precision of 100%, and the algorithms has to predict a subset of the archivists keywords. For 
“bounded rationality” assumption (Figure 5 right), additional keywords can be correct and allow the algorithm to 
complement or outperform human. 

 

 

 
Figure 5. Sets for recall and precision under “perfect rationality” (left)  

and “bounded rationality” (right) 
 
4.2. Evaluation Results 
 

We evaluate precision and recall depending on the number of predicted tags. For “perfect rationality”, Figure 6 
(left) shows precision and recall as a function of the number of predicted tags. We see that the sweet spot for both 
recall and precision lies near 5 predicted tags and can be explained as follows: If we predict more words than the 
archivist, the superfluous words will be incorrect by assumption (“perfect rationality”) and the precision decreases. 
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In contrast, if we predict less words than the archivist, we have insufficient recall by assumption. The point where 
recall and precision intersect and have their tangent point is almost exactly 4.7, the number of keywords that 
archivists assign on average. 

Assuming “bounded rationality”, we achieved much better precision results. Interestingly, the precision stayed 
on a more or less constant level of about 23% independent of the number of predicted tags. The recall however 
increased constantly with the number of predicted tags up to a level of 23% for 10 predicted tags.  

 

                     
Figure 6. Precision and recall depending on number of predicted tags with (top) “perfect rationality” 

assumption (63165 documents) and (bottom) “bounded rationality” assumption (100 documents)  
 

In Table 1, we depict three random examples of manually assigned keywords from archivists and the matching 
keywords identified by the algorithm. 

Taking a second look at the generated keywords for the 100 documents, we find that the approach identified 
keywords that are not mentioned in the texts. Here we see the strength of this approach compared to syntactical 
approaches like tf-idf, because the context of words is more robust than syntax similarities. 

However, the focus on context also brings along some drawbacks. During evaluation of the 100 documents, we 
noticed some keywords that did not match the content of the document but share a similar context with correct 
predictions. E.g., protestant church was predicted though the document was about catholic church only. Also, the 
algorithms could not differentiate very well between different music genres and predicted hip hop, rap, reggae, and 
punk together with traditional music and world music.  
 

Table 1. Example of manually identified keywords and matching keywords  
identified by the algorithm (keywords translated into English) 

 
Manually assigned 
keywords from 
archivists 

Matching keywords 
identified by the 
algorithm 

power economy, nuclear 
energy, energy and 
water management, 
nuclear phaseout, 
energy policy 

power economy, 
nuclear energy, 
nuclear phaseout  

church, protestant 
church, catholic church, 
work, religion, pilgrim  

protestant church 

music, new music, 
musical theater, opera, 
debut performance, 
composer 

musical theater, 
opera 

 



Obviously, the approach loses its discriminatory power in deeper levels of the taxonomy. The more specific the 
keywords in the taxonomy, the less accurate the prediction. As the word2vec approach represents word by their 
contexts, it is likely that words with similar contexts are predicted as well, even though they are incorrect. This 
seems to be an inherent characteristic of the approach but may be partly overcome with a larger document corpus 
that would enable a more differentiated training of contexts. Also, increasing the vector size that reflects the 
dimensionality of the word context may add discriminatory power.  

 
4.2. Relaxing the Evaluation Allowing Parent Keywords 
 

So far, we evaluated exact matches. However, in some cases, it might suffice to correctly predict a more general 
term. It is imaginable that an archivist tagged “catholic church”, while the algorithm suggested “church” as a 
keyword, or the other way around. Therefore, in a relaxed evaluation, we also allow keywords on the parent level 
in the taxonomy both for predicted and archivists’ keywords. 

As a result, we obtain almost twice (2x) as many predictions (top 10 predicted words + max. 10 of their parental 
words) and twice as many correct keywords to be matched (archivist’s keywords + their parental words). This way, 
under the “perfect rationality” assumption, we managed to obtain 248,049 correct predictions, leading to a precision 
of 248,049 / (63,165*5.2*2) = 38% and a recall of 248,049 / (63,165*10*2) = 19.6%. 

By allowing matches in the next hierarchy level, we were able to increase precision and recall drastically. In fact, 
we could correctly predict 248,049 in 63,165 documents, which equals 3.9 correct keywords per document on 
average. 
 
5. Discussion, Limitations and Further Research 
 

We proposed an approach to identify taxonomy keywords for document corpora with the help of word 
embeddings. In the same way as Le and Mikolov stated, that “an important advantage of paragraph vectors is that 
they are learned from unlabeled data and thus can work well for tasks that do not have enough labeled data” [12], 
we pursued this advantage and extended it to unsupervised keyword identification for existing documents. Our 
results indicate that the approach has several advantages over supervised classifiers: no labelled training data is 
needed for supervised classification, and computational complexity is low (training of a shallow neural network and 
calculating dot products). Also, our approach has advantages over other unsupervised methods like tf-idf and 
TextRank, as we can predict words that do not appear in the respective document but directly match the vocabulary 
of a company’s taxonomy.  

Comparing recall and precision values on a just quantitative scale, at first glance, the achieved performance 
values do not seem to be competitive to what supervised classifiers usually achieve, given either a huge dataset or 
a by magnitude smaller number of classes. For 12,236 classes and 63,165 training documents however, also 
supervised approaches will not achieve incredible values but still have the drawback that they still need document-
tag relations as training data. The comparison to other unsupervised classification approaches shows that our 
approach is in similar magnitude (around 30%) to what has been achieved on other datasets [4] (therefore having 
limited comparability). 

Our evaluation showed that the approach was able to generate correct keywords that archivists did not assign. 
The approach may therefore complement the work of human annotators by giving suggestions to an expert which 
taxonomy keywords to consider. The suggestions can augment the work of the expert and speed-up his decisions 
on keywords that directly match the company-specific taxonomy. In a human-machine collaboration, both human 
and machine together can achieve better keyword quality and quality.  

Considering further research, we still need to tweak our approach, for which we see two ways, a) optimizing 
the hyperparameters for training, and b) also considering parent keywords of the predicted keywords, making use 
of the taxonomy’s hierarchy. This way, we want to address the issue of lacking differentiation in deeper taxonomy 
levels and to increase precision. After optimizing our approach, we still need to evaluate it against other 
unsupervised methods and on other data sets. 
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